Robotic-based carbon ion therapy and patient positioning in 6 degrees of freedom: setup accuracy of two standard immobilization devices used in carbon ion therapy and IMRT
نویسندگان
چکیده
PURPOSE To investigate repositioning accuracy in particle radiotherapy in 6 degrees of freedom (DOF) and intensity-modulated radiotherapy (IMRT, 3 DOF) for two immobilization devices (Scotchcast masks vs thermoplastic head masks) currently in use at our institution for fractionated radiation therapy in head and neck cancer patients. METHODS AND MATERIALS Position verifications in patients treated with carbon ion therapy and IMRT for head and neck malignancies were evaluated. Most patients received combined treatment regimen (IMRT plus carbon ion boost), immobilization was achieved with either Scotchcast or thermoplastic head masks. Position corrections in robotic-based carbon ion therapy allowing 6 DOF were compared to IMRT allowing corrections in 3 DOF for two standard immobilization devices. In total, 838 set-up controls of 38 patients were analyzed. RESULTS Robotic-based position correction including correction of rotations was well tolerated and without discomfort. Standard deviations of translational components were between 0.5 and 0.8 mm for Scotchcast and 0.7 and 1.3 mm for thermoplastic masks in 6 DOF and 1.2-1.4 mm and 1.0-1.1 mm in 3 DOF respectively. Mean overall displacement vectors were between 2.1 mm (Scotchcast) and 2.9 mm (thermoplastic masks) in 6 DOF and 3.9-3.0 mm in 3 DOF respectively. Displacement vectors were lower when correction in 6 DOF was allowed as opposed to 3 DOF only, which was maintained at the traditional action level of >3 mm for position correction in the pre-on-board imaging era. CONCLUSION Setup accuracy for both systems was within the expected range. Smaller shifts were required when 6 DOF were available for correction as opposed to 3 DOF. Where highest possible positioning accuracy is required, frequent image guidance is mandatory to achieve best possible plan delivery and maintenance of sharp gradients and optimal normal tissue sparing inherent in carbon ion therapy.
منابع مشابه
Calculation of total dose and dose equivalent distribution in the treatment of lung cancer using MR-guided carbon therapy
Nowadays, in order to improve the accuracy of treatment in radiation therapy, there are many attempts to use magnetic resonance imaging (MRI) due to the advantages of excellent soft tissue contrast and ultra-fast pulse sequences. On the other hand, carbon-ion radiation therapy is developing rapidly due to the benefits of greater relative biological effectiveness (RBE) and the application in the...
متن کاملImpact of Various Beam Parameters on Lateral Scattering in Proton and Carbon-ion Therapy
Background: In radiation therapy with ion beams, lateral distributions of absorbed dose in the tissue are important. Heavy ion therapy, such as carbon-ion therapy, is a novel technique of high-precision external radiotherapy which has advantages over proton therapy in terms of dose locality and biological effectiveness.Methods: In this study, we used Monte Carlo method-based Geant4 toolkit to s...
متن کاملDosimetric Evaluation of Volumetric Modulated Arc Therapy (VMAT) and Intensity Modulated Radiotherapy (IMRT) Using AAPM TG 119 Protocol
Background: The commissioning accuracy of Volumetric Modulated Arc Therapy (VMAT) need to be evaluated.Objective: To test and evaluate commissioning accuracy of VMAT based on the TG 119 protocols at local institution. Material and Methods: The phantom, structure sets, VMAT and IMRT beam parameter setup, dose prescriptions and planning objectives were following TG 119 guidelines to c...
متن کاملFirst clinical experience in carbon ion scanning beam therapy: retrospective analysis of patient positional accuracy
Our institute has constructed a new treatment facility for carbon ion scanning beam therapy. The first clinical trials were successfully completed at the end of November 2011. To evaluate patient setup accuracy, positional errors between the reference Computed Tomography (CT) scan and final patient setup images were calculated using 2D-3D registration software. Eleven patients with tumors of th...
متن کاملMonte Carlo computation of dose deposited by carbon ions in radiation therapy
Background: High-velocity carbon ion beams represent the most advanced tool for radiotherapy of deep-seated tumors. Currently, the superiority of carbon ion therapy is more prominent on lung cancer or hepatomas. Materials and Methods: The data for lateral straggling and projected range of monoenergetic 290 MeV/u (3.48 GeV) carbon ions in muscle tissue were obtained from the stopping and range o...
متن کامل